
 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
 

2. REPORT TYPE 
 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

 
 

5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 
 
 
 
 

 
 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
   
   
  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
 

15. SUBJECT TERMS 
 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 

a. REPORT 
 

b. ABSTRACT 
 

c. THIS PAGE 
 

  
 

19b. TELEPHONE NUMBER (include area 
code) 
 

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18 

01-04-2011 Proceedings MAR 2011 - APR 2011

A New Perspective on GMM Subspace Compensation Based on PPCA 
and Wiener Filtering

FA8720-05-C-0002

Alan McCree, Doug Sturim, and Doug Reynolds

MIT Lincoln Laboratory 
244 Wood Street 
Lexington, MA 02420 

NSA 
9800 Savage Rd 
Ft. Meade, MD 20755

NSA

DISTRIBUTION STATEMENT A.  Approved for public release; distribution is unlimited.

We present a new perspective on the subspace compensation techniques that currently dominate the field 
of speaker recognition using Gaussian Mixture Models (GMMs). Rather than the traditional factor analysis 
approach, we use Gaussian modeling in the sufficient statistic supervector space combined with 
Probabilistic Principal Component Analysis (PPCA) within-class and shared across class covariance 
matrices to derive a family of training and testing algorithms. Key to this analysis is the use of two noise 
terms for each speech cut: a random channel offset and a length dependent observation noise. Using the 
Wiener filtering perspective, formulas for optimal train and test algorithms for Joint Factor Analysis (JFA) 
are simple to derive. In addition, we can show that an alternative form of Wiener filtering results in the 
i-vector approach. thus tying together these two disparate techniques.

speaker recognition, Gaussian mixture model, Wiener filter, probabilistic principal components analysis (PPCA), factor analysis

U

U U U
SAR 4

Zach Sweet

781-981-5997



A New Perspective on GMM Subspace Compensation Based on PPCA and 
Wiener Filtering 

Alan McCree, Doug Sturim, and Doug Reyn 

MIT Lincoln Laboratory 
Lexington, MA 02420 

dJ'HIS MATERIAL HAS BEEN CLEARED 
FOR PUBLIC RELEASE BY 66 ABW/PA 

- ;( 
DATE: t CLt!-'1, I . ' 

[mccree, sturim, dar]®ll.mit.edu ~ r b.!J· • -./I'~ i out~· CASE# ll ( ~d..\> T)'\.-' i - l 

Abstract 

We present a new perspective on the subspace compensatio!l 
techniques that currently dominate the field of speaker recogru
tion using Gaussian Mixture Models (GMMs). Rather than the 
traditional factor analysis approach, we use Gaussian modeling 
in the sufficient statistic supervector space combined with Prob
abilistic Principal Component Analysis (PPCA) within-class 
and shared across class covariance matrices to derive a fam
ily of training and testing algorithms. Key to this analysis is 
the use of two noise terms for each speech cut: a random chan
nel offset and a length dependent observation noise. Using the 
Wiener filtering perspective, fommlas for optimal train and test 
algorithms for Joint Factor Analysis (JFA) are simple to derive. 
In addition, we can show that an alternative form of Wiener fil
tering results in the i-vector approach, thus tying together these 
two disparate techniques. 
Index Terms: speaker recognition, Gaussian mixture mode_l. 
Wiener filter, probabilistic principal components analysts 
(PPCA), factor analysis 

1. Introduction 
Modeling speakers with GMMs and then generating test cut 
scores by evaluating the likelihood of each possib!e speaker 
has long been a successful method in speaker recognition [1]. 
In the last few years, subspace methods have been shown to 
provide both convenient models for channel compensation as 
well as rapid speaker enrollment, particularly with the JFA ap
proach [2]. More recently, the subspace paranreter~ ~emselves, 
referred to as i-vectors, have been used for recogrullon [3]. 

In this paper we present an alternative perspective on these 
algorithms based on su~cent statistic sc~ng, Gaus~ian ob
servation and channel norses, PPCA covanance modelmg, and 
Wiener filtering. The structure of the paper is as follows. First, 
in Section 2 we present GMM scoring using sufficient statistics 
and introduce the supervector observation and channel noises. 
A Gaussian model for the channel noise results in a simple 
Gaussian likelihood evaluation in the model supervector space; 
the use of a structured covariance matrix with PPCA simplifies 
the evaluation formulas. Section 2.3 then introduces the concept 
of Wiener filtering in the supervector space, and shows that this 
1eads to straighforward derivations of the JFA train and test for
mulas. In Section 3, we show that reversing the order of the 
Wiener filter and removing the observation noise rather than the 
channel noise results in i-vector approaches. Section 4 provides 
experimental results comparing these various approaches on the 
NIST SRElO evaluation. Finally, concluding remarks are pro
vided in Section 5. 

This work was sponsored by the Department of Defense under Air 
Force Contract FA8721-05-C-0002. Opinions, intczpretations, conclu
sions, and teCOrnmendations are those of the authors and are not neces
sarily endorsed by the United States Government. 

We begin with a review of GMM model training and testing ~ro
cedures presented in terms of Gaussian supervector suffictent 
statistics and Wiener filtering. We start with the assumption 
that all models differ only in the mean parameters. To be more 
specific, we assume that each speaker can be represented by a 
GMM with speaker-specific means but shared weights and co
variance matrices. 

2.1. Sufficient Statistic Scoring 

Traditionally, the lilcelihood of a set of vectors under a GMM 
model is evaluated by directly computing the likelihoods for 
each frame and multiplying them together, a process which we 
refer to as frame-by-frame scoring. However, it is well known, 
and the basis for maximum likelihood training of the parameters 
of a GMM via the EM algorithm, that this lilcelihood can equiv
alently be evaluated by first computing the sufficient statistics 
of the input vectors and then using a single formula for the total 
lilcelihood. We refer to this as sufficient statistic scoring. For 
each Gaussian, the statistics needed are the counts, .sum, and 
sum of squares of the vectors assigned to that Gaussian; in ad
dition there is an overall statistic related to the mixture counts. 
Note that for a GMM (unlike a single Gaussian), these statistics 
are model-specific, since the model parameters are needed to 
generate the alignment of input vectors to Gaussians. 

In general, sufficient statistic scoring gives the same answer 
as frame-by-frame scoring but provides no computational ad
vantage, so it is not used in the testing process. Its primary use 
is in the theory of model training, since it provides formulas 
for the derivatives necessary to find optimal GMM parameters. 
However, it can also be very helpful for testing in the partic
ular instance that the alignment is already given (for example 
from the UBM rather than model-dependent) the lilcelihood ra
tio will be computed between two GMMs that only differ in 
means, with the same weights and variances. In this case, only 
one set of sufficient statistics is needed for all models, and only 
the counts and sum (or equivalently sample mean) are needed. 
We note that for a straightforward GMM-UBM speaker recog
nition system, this assumption ofUBM-alignment gives a small 
performance degradation (on the order of 10%) as compared 
to using the correct per-model statistics. However, the use of 
a single set of sufficient statistics is critical for computational 
feasibility of the more sophisticated techniques to be described 
next. 

The evaluation of GMM lilcelihood for a set of vectors then 
reduces to a single Gaussian evaluation in a vector space of all 
the Gaussian means stacked together, which we refer to as a 
supervector. This Gaussian likelihood for model i is given by 

p(xiS;) ~ N(m;, I:.,) (1) 

where X. is the test sample mean supervector, m, is the model 
mean supervector, and I:., is an observation noise that shrinks 



to zero as the number of vectors increases. More ~pecifically, 
if the GMM covariances are diagonal then they can also be 
stacked into a supervector :Eo and the observation noise is a 
diagonal covariance matrix in the supervector space where each 
diagonal element is the corresponding covariance from Eo di
vided by the count for this Gaussian. 

The corresponding log-likelihood can be written as 

where Co is a constant which is the same for all models and can 
be ignored. 

2.2. The Additive Noise Model 

This observation noise is equivalent to an additive Gaussian 
noise, since under this model we observe 

x=m; + n (3) 

where n is Gaussian with zero mean and covariance I:,.. This 
leads naturally to the question: what if the observed supervec
tor is also conupted by a channel (or session) noise? For exam
ple, suppose that the feature vectors are log filterbank energies, 
and the test sequence is from a new channel with unknown fre
quency response resulting in an additive offset to the log filter
banks. In this case we can write 

x=m;+c+n (4) 

where c is an unknown offset (additive noise) due to the chan
nel for this recording. If we assume that c is Gaussian with zero 
mean and covariance Ec then this is a straightforward mathe
matical problem. Since both noise terms are Gaussian, the cor
responding likelihood for speaker i is also Gaussian and is given 
by 

(5) 

We refer to this technique as full Gaussian scoring. 
To estimate Ilc, we can use a large training set of model 

variations between well-trained models and test cuts and com
pute a sample covariance matrix. This is often referred to as the 
within-class covariance. Without additional constraints, how
ever, this covariance matrix will be extremely large (the square 
of the supervector dimension). For a 2048 mixture Gaussian 
with 60 dimensional feature vectors, the supervector size is 
122, 280 so a full covariance matrix has more than 1010 param
eters. It would be much simpler if Ilc were diagonal, but this 
is not a realistic assumption. For example, in our hypothetical 
frequency response case c would be identical for each individ
ual Gaussian in the supervector, so many components would be 
highly correlated. A straightforward approach to reducing the 
number of parameters in the channel covariance matrix is with 
Principal Component Analysis (PCA), where we keep only the 
eigenvectors of the covariance corresponding to the q largest 
eigenvalues. This is equivalent to assuming that the channel 
variation lies in a subspace of the supervectors. An even more 
powerful approach is Probabilistic PCA (PPCA) [4], in which 
the covariance matrix also includes a constant diagonal term so 
that-it spans the entire space: 

(6) 

If PCA or PPCA is used, the computation of the inverse of the 
covariance matrix needed to evaluate the likelihood of a model 
can be greatly simplified by the matrix irrversion lemma. This 
formula requires only the inversion of a qxq matrix rather than 
a ful!size one: 

(UUT + D)-1 = D-1 - D-1 U(I + UT D-1 u)-1UTD-1 • 

(7) 

2.3. Wiener Filtering for Channel Compensation 

As an alternative to evaluating the likelihood of the test se
quence under both observation and channel noise, it might 
be simpler to compensate for the channel noise with a pre
processing step. This is the vector space equivalent of a noise 
suppression algorithm for time signals. Minimizing the mean 
square error between the clean and compensated supervectors 
results in a matrix Wiener filter [5]. 

2.3.1. Speaker-Dependent Channel Compensation 

Recall our modeling assumption of Eq. 4. The MMSE estimate 
of the channel-compensated supervector assuming the model 
mean m. is known is given by the Wiener filter: 

(8) 

Equivalently, we can first estimate the channel supervector and 
then subtract it from the input using: 

x=x-c,. (10) 

In either case, we then evaluate the model likelihood assum
ing only observation noise with Eq. 5. IfPCA or PPCA is used 
to model the channel covariance, the matrix inversion required 
for Wiener filtering is the same one needed for the full Gaussian 
scoring in the previous section, so the matrix inversion lemma 
can again be used to avoid a large matrix inversion. 

2.3.2. Speaker-Independent Channel Compensation 

Channel-compensated GMM scoring requires computing a new 
channel offset for each speaker. If many models are to be 
scored, it is tempting to reduce complexity by using the same 
offset for all models. The assumption of a model-independent 
channel offset also allows for the possibility of feature domain 
pre-processing of the input signal [6]. A simple approximation 
is common!y used for this, namely to assume the model is actu" 
ally the UBM so that: 

Unfortunately, this assumption of a single channel offset for 
all models does provide some performance degradation, For
tunately, another simplification referred to as linear (or inner 
product) scoring experimentally seems able to compensate for 
this loss [7]. This consists of approximating the Gaussian eval
uation with only the linear term: 

We would argue that a better approach to model
independent compensation would be to use the MMSE estimate 
of channel offset when the model is unknown, which is given 
by the following Wiener filter: 

where we need to know the mean and covariance of the model 
means, mo and I:., which will be discussed in the next section. 
Unfortunately we have found that using this equation in speaker 
recognition does not work well; the reasons for this are not yet 
clear. 



2.4. GMM Model Training by Wiener Filuring 

We can also use :his formalism to derive the optimal estimate 
of the model mean for a new speaker enrollment. We begin 
without channel distortion, in which case a speaker's training 
data can be modelled by a sample mean supervector corrupted 
by additive observation noise as given by Eq. 3. The MMSB 
estimate of the model mean can be attained by Wiener filtering 
to remove the observation noise n: 

(14) 

We assume that the mean of all model means mo ("typical 
speaker") is given by the UBM. In more general terminology, 
the speaker covariance E • is referred to as the across-class co
variance matrix. Similarly to the within-class case, we estimate 
this covariance using a sample covariance of model means over 
a large training set, and we need to assume a structured covari
ance matrix to reduce the number of parameters. If we assume 
E, is diagonal with the form of a constant times the GMM co
variance Eo, this corresponds exactly to relevance MAP adap
tation of a model from the UBM [1]. If we use a PCA struc
ture, this becomes eigenvoice modeling. the advantage of the 
eigeovoice approach is faster training with small amouots data, 
since all Gaussians are updated even if only some are seen in 
training. Unfortunately, when a large amount of data is avail
able the eigenvoice approach does not converge to the correct 
model unless the subspace assumption is exactly correct. With 
PPCA, we get a more general representation of the extended 
MAP (EMAP) approach which combines fast adaptation speed 
with complete convergence [8]. Note that if we normalize al.l 

supervectors to the GMM covariance (by multiplying by EJ) 
then the constant PPCA term corresponds to relevance MAP; 
we use this normalization in all of our experiments. 

In the presence of channel noise, a single enrollment cut is 
again represented by Bq. 4. Now the MMSE estimate requires 
removing both channel and observation noise by Wiener filter
ing; 

m; = E .(E. +E.,+ E,.)-1(x- mo) +mo. (15) 

which is equivalent to the two-stage process of channel bias es
timation with Eq. 13 followed by mean estimation: 

m ; = E,(E. + E,)-1(x - c- mo) +mo. (16) 

This can be interpreted as channel compensation followed by 
EMAP training. Note that the equation for estimating channel 
offset is different for training than it was for test, since here the 
actual model is not yet known resulting in an additional Gaus
sian uncertainty. 

These are the equations for a single enrollment cut. The 
precise equations for multiple enrollments are complicated, but 
a common approximation is to perform channel compensation 
on each cut and then sum statistics for the final BMAP training. 
More precisely, though, the amount of channel compensation 
needed should be reduced as the number of cuts increases, since 
the channel will be averaged out automatically even without ex-
plicit compensation. · 

The combination of a PCA within-class (channel) covari
ance with a PCA or PPCA across-class covariance provides ex
actly the Joint Factor Analysis equations [2]. 

3. Reversing the Order: 1-vectors 
So far, we have used Wiener filtering in two ways: at test time 
to remove channel noise, and during training to remove both 
channel and observation noise. Here we explore an alternative 
possibility of reversing the order during testing: remove the ob
servation noise first and then evaluate the likelihood of the chan
nel noise. 

Again we start with our modeling assumption of Eq. 4, but 
now we obtain the MMSE estimate of the obse.rvation no~ 
compensated supervector using a Wiener filter: 

x = E,(Ec + E,).:.1(x- m;) + m; (17) 

We then evaluate the model likelihood using only channel noise: 

p(xiS;) "'N(m;, Ec) (18) 

Note that this is equivalent to estimating the channel with Eq. 9 
and then evaluating 

p(c;IS;) "'N(O, Ec) (19) 

This equation is straightforward with a PPCA model for 
E.,, but we can expand the key term of the log likelihood to 
gain additional insight: 

cfE;1 C. (x- m;)T(Ec + En)-1E cE;1 Ec 

(Ec + En)- 1 (x- m;) 

For a PCA channel covariance (equivalent to a PPCA covari
ance as a 2 

-+ 0), Ec = Ucr/{, and 

(20) 

where i ; is the low-dimensional component of C. before map
ping back to the full supervector. 

z, = U'[ (Ec + E.;) - 1(x - m;) (21) 

This shows that we can equivalently evaluate the likelihood of 
a speaker model with: 

(22) 

Therefore, Wiener filtering the observation noise rather 
than the channel noise results in the evaluation of the log
likelihood of the particular model as a simple inner product in 
the low-dimensional channel space. This qc·dimensional vector 
is referred to as an i-vector [3], and in this case it could also be 
referred to as a speaker-dependent channel factor. 

3.1. Model Independent I-vecton 

In a fashion similar to the channel compensation approach, we 
can replace the model-dependent observation noise compensa
tion Wiener filter with a model-independent one based on the 
UBM: 

x = (E, + Ec)(E. + Ec + EnF \x- mo) + mo (23) 

We can simplify this notation by introducing the total covari
ance as the sum of the channel (within-class) and model (across
class) covariances; Etot = E, + Ec. 

If we use PCA modeling for both the channel and model 
covariances, and assume that both lie in the same subspace, 
then a similar limiting approach as above leads to the following 
expression for evaluating the likelihood of the test observation 
given a model; 

(24) 

where z is the low-dimensional component of the mean
removed X: before mapping back to the full supervector: 

z = u?;;t(Etot + En)- 1(x- mo) (25) 

and m: and E~ represent the model. mean and channel covari
ance in the subspace. 

This result shows that Wiener filtering the observation 
noise in a model-independem fashion implies that the log
likelihood of a particular model is a simple Gaussian evaluation 
of the channe! covariance in the low-dimensional total variabil
ity space. 1'his q-diroensional vector is another example of an 
i-vector, in this case a total factor. 



e 
lc c 
.6 8.5 

GMM-UBMzt 11.40 5.24 7.33 
GMM stat 18.87 7.44 8.19 
GMM statzt 11.18 5.24 7.33 
JFA full 3.68 0.95 1.30 
JFASIWF 7.1 2.0 2.3 
JFA SI linear 3.64 0.48 1.14 
FA SI linear 4 .13 0.48 0.91 
ivecSD 7.22 4.35 8.19 
ivec SI 3.32 0.60 1.72 
ivec cosine 3.31 0.62 1.72 

Table 1: EER Performance for NIST SRElO Extended Evalua
tion Telephone Data 

4. Experimental Results 
We have compared the performance of some of the systems de
scribed in this paper on the NIST SRE 2010 extended eval
uation task [9]. We used a modified version of the MITLL 
JFA submission [10], using a 512-mixture GMM based on 39-
d.imensional telephone-bandwidth cepstral features including 
deltas, with feature mean and variance normalization to mitigate 
channel effects. The background model and speaker covariance 
where trained on Switchboard II as well as SRE 2004, 2005, and 
2006 telephone data. Channel covariance training used the same 
data except for Switchboard. The PPCA dimension for speaker 
space was 300, and for PCA dimension for channel noise was 
100. For the i-vector approach, the total PCA dimension was 
400. 

The following systems were tested: 

• GMM-UBM: straightforward GMM-UBM system with 
frame-by-frame scoring 

• GMM-UBM zt: as above with ZT-norm 

• GMM stat: G~-UBM using UBM-aligned statistics 
for scoring 

• GMM stat zt: as above with ZT-norm 

• JFA full: PPCA speaker model, PCA channel, full Gaus
sian scoring, ZT-norm 

• JFA SI WF: JFA with speaker-independent Wiener filter
. ing 

• JFA SI linear: JFA with speaker-independent channel 
compensation and linear scoring · 

• FA SI linear: as above but diagonal speaker model 

• ivec SD: speaker-dependent i-vector system 

• ivec SI: speaker-independent i-vector system 

• ivec cosine: reference approach using cosine scoring [3]. 

From the EER and minimum DCF results in Tables 1 and 2, we 
make the following conclusions: 

• Sufficient statistic scoring results in a slight performance 
degradation which is eliminated by ZT-norm. 

• All forms of channel compensation provide drastic im
provement with the exception of JFA SI WF and ivec 
SD. 

• Fast speaker adaptation with EMAP provides modest 
gain (JFA vs. FA) 

• Scoring observation noise only, channel noise only, or 
both all result in similar performance. 

:system Male Female 
lc 8c 1c 8c 

GMM-UBM 0.970 0.832 0.957 0.968 
GMM-UBMzt 0.952 0.933 0.962 0.870 
GMM stat 0.971 0.873 0.963 0.922 
GMM statzt 0.964 0.946 0.974 0.887 
JFA full 0.586 0.227 0.528 0.322 
JFASIWF 0.71 0.38 0.70 0.43 
JFA SI linear 0.544 0.210 0.570 0.319 
FA SI linear 0.522 0.268 0.557 0.328 
ivecSD 0.917 0.695 0.934 0.811 
ivec SI 0.488 0.257 0.627 0.410 
ivec cosine 0.472 0.252 0.647 0.419 

Table 2: Normalized minDCF Performance for NIST SRE10 
Extended Evaluation Telephone Data 

5. Conclusion 
In this paper we have presented an alternative perspective on 
subspace modeling in GMM~based speaker recognition. Work
ing with sufficient statistics, Gaussian PPCA speaker and chan
nel models, and Wiener filtering provided a straightforward ap
proach to deriving JFA algorithms. An alternative approach 
to Wiener filtering yielded the i-vector approach, showing that 
both JFA and i-vectors can be derived from a single formalism. 
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